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Preface

This book is based on lectures in courses that I taught from 2000 to 2011 in the Department
of Physics at Carnegie Mellon University to undergraduates (mostly juniors and seniors)
and graduate students (mostly first and second year). Portions are also based on a
course that I taught to undergraduate engineers (mostly juniors) in the Department of
Metallurgical Engineering and Materials Science in the early 1970s. It began as class notes
but started to be organized as a book in 2004. As a work in progress, I made it available
on my website as a pdf, password protected for use by my students and a few interested
colleagues.

It is my version of what I learned from my own research and self-study of numerous
books and papers in preparation for my lectures. Prominent among these sources were
the books by Fermi [1], Callen [2], Gibbs [3, 4], Lupis [5], Kittel and Kroemer [6], Landau
and Lifshitz [7], and Pathria [8, 9], which are listed in the bibliography. Explicit references
to these and other sources are made throughout, but the source of much information is
beyond my memory.

Initially it was my intent to give an integrated mixture of thermodynamics and statis-
tical mechanics, but it soon became clear that most students had only a cursory under-
standing of thermodynamics, having encountered only a brief exposure in introductory
physics and chemistry courses. Moreover, I believe that thermodynamics can stand on
its own as a discipline based on only a few postulates, or so-called laws, that have stood
the test of time experimentally. Although statistical concepts can be used to motivate
thermodynamics, it still takes a bold leap to appreciate that thermodynamics is valid,
within its intended scope, independent of any statistical mechanical model. As stated by
Albert Einstein in Autobiographical Notes (1946) [10]:

“A theory is the more impressive the greater the simplicity of its premises is, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression which classical thermodynamics made on me. It is the
only physical theory of universal content concerning which I am convinced that within
the framework of the applicability of its basic concepts, it will never be overthrown.”

Of course thermodynamics only allows one to relate various measurable quantities to
one another and must appeal to experimental data to get actual values. In that respect,
models based on statistical mechanics can greatly enhance thermodynamics by providing
values that are independent of experimental measurements. But in the last analysis, any
model must be compatible with the laws of thermodynamics in the appropriate limit of

xvii
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sufficiently large systems. Statistical mechanics, however, has the potential to treat smaller
systems for which thermodynamics is not applicable.

Consequently, I finally decided to present thermodynamics first, with only a few
connections to statistical concepts, and then present statistical mechanics in that context.
That allowed me to better treat reversible and irreversible processes as well as to give a
thermodynamic treatment of such subjects as phase diagrams, chemical reactions, and
anisotropic surfaces and interfaces that are especially valuable to materials scientists and
engineers.

The treatment of statistical mechanics begins with a mathematical measure of dis-
order, quantified by Shannon in the context of information theory. This measure is
put forward as a candidate for the entropy, which is formally developed in the context
of the microcanonical, canonical, and grand canonical ensembles. Ensembles are first
treated from the viewpoint of quantum mechanics, which allows for explicit counting of
states. Subsequently, classical versions of the microcanonical and canonical ensembles
are presented in which integration over phase space replaces counting of states. Thus,
information is lost unless one establishes the number of states to be associated with a
phase space volume by requiring agreement with quantum treatments in the limit of high
temperatures. This is counter to the historical development of the subject, which was
in the context of classical mechanics. Later in the book I discuss the foundation of the
quantum mechanical treatment by means of the density operator to represent pure and
statistical (mixed) quantum states.

Throughout the book, a number of example problems are presented, immediately
followed by their solutions. This serves to clarify and reinforce the presentation but also
allows students to develop problem-solving techniques. For several reasons I did not
provide lists of problems for students to solve. Many such problems can be found in
textbooks now in print, and most of their solutions are on the internet. I leave it to teachers
to assign modifications of some of those problems or, even better, to devise new problems
whose solutions cannot yet be found on the internet.

The book also contains a number of appendices, mostly to make it self-contained but
also to cover technical items whose treatment in the chapters would tend to interrupt the
flow of the presentation.

I view this book as an intermediate contribution to the vast subjects of thermody-
namics and statistical mechanics. Its level of presentation is intentionally more rigorous
and demanding than in introductory books. Its coverage of statistical mechanics is much
less extensive than in books that specialize in statistical mechanics, such as the recent
third edition of Pathria’s book, now authored by Pathria and Beale [9], that contains
several new and advanced topics. I suspect the present book will be useful for scientists,
particularly physicists and chemists, as well as engineers, particularly materials, chemical,
and mechanical engineers. If used as a textbook, many advanced topics can be omitted
to suit a one- or two-semester undergraduate course. If used as a graduate text, it could
easily provide for a one- or two-semester course. The level of mathematics needed in most
parts of the book is advanced calculus, particularly a strong grasp of functions of several
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variables, partial derivatives, and infinite series as well as an elementary knowledge of
differential equations and their solutions. For the treatment of anisotropic surfaces and
interfaces, necessary relations of differential geometry are presented in an appendix. For
the statistical mechanics part, an appreciation of stationary quantum states, including
degenerate states, is essential, but the calculation of such states is not needed. In a few
places, I use the notation of the Dirac vector space, bras and kets, to represent quantum
states, but always with reference to other representations; the only exceptions are Chapter
26, Quantum Statistics, where the Dirac notation is used to treat the density operator, and
Appendix I, where creation and annihilation operators are treated.

I had originally considered additional information for this book, including more of my
own research on the thermodynamics of inhomogeneously stressed crystals and a few
more chapters on the statistical mechanical aspects of phase transformations. Treatment
of the liquid state, foams, and very small systems were other possibilities. I do not address
many-body theory, which I leave to other works. There is an introduction to Monte Carlo
simulation at the end of Chapter 27, which treats the Ising model. The renormalization
group approach is described briefly but not covered in detail. Perhaps I will address some
of these topics in later writings, but for now I choose not to add to the already considerable
bulk of this work.

Over the years that I shared versions of this book with students, I received some
valuable feedback that stimulated revision or augmentation of topics. I thank all those
students. A few faculty at other universities used versions for self-study in connection with
courses they taught, and also gave me some valuable feedback. I thank these colleagues
as well. I am also grateful to my research friends and co-workers at NIST, where I have
been a consultant for nearly 45 years, whose questions and comments stimulated a lot
of critical thinking; the same applies to many stimulating discussions with my colleagues
at Carnegie-Mellon and throughout the world. Singular among those was my friend and
fellow CMU faculty member Prof. William W. Mullins who taught me by example the love,
joy and methodologies of science. There are other people I could thank individually for
contributing in some way to the content of this book but I will not attempt to present
such a list. Nevertheless, I alone am responsible for any misconceptions or outright errors
that remain in this book and would be grateful to anyone who would bring them to my
attention.

In bringing this book to fruition, I would especially like to thank my wife Carolyn for
her patience and encouragement and her meticulous proofreading. She is an attorney,
not a scientist, but the logic and intellect she brought to the task resulted in my rewriting
a number of obtuse sentences and even correcting a number of embarrassing typos and
inconsistent notation in the equations. I would also like to thank my friends Susan and
John of Cosgrove Communications for their guidance with respect to several aesthetic
aspects of this book. Thanks are also due to the folks at my publisher Elsevier: Acqui-
sitions Editor Dr. Anita Koch, who believed in the product and shepherded it through
technical review, marketing and finance committees to obtain publication approval;
Editorial Project Manager Amy Clark, who guided me though cover and format design as
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well as the creation of marketing material; and Production Project Manager Paul Prasad
Chandramohan, who patiently managed to respond positively to my requests for changes
in style and figure placements, as well as my last-minute corrections. Finally, I thank
Carnegie Mellon University for providing me with an intellectual home and the freedom
to undertake this work.

Robert F. Sekerka
Pittsburgh, PA
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