Thermal Physics

Thermal Physics

Thermodynamics and Statistical Mechanics for Scientists and Engineers

Robert Floyd Sekerka

Carnegie Mellon University Pittsburgh. PA 15213, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA

© 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

For information on all Elsevier publications visit our website at http://store.elsevier.com/

ISBN: 978-0-12-803304-3

www.elsevier.com • www.bookaid.org

Dedication

To Care

who cared about every word and helped me write what I meant to say rather than what I had written

Table of Contents

Al	pout th	ne Cover xv	
Pr	eface	xvii	
PA	ART I	Thermodynamics	1
1	Intro	oduction	3
	1.1	Temperature	3
	1.2	Thermodynamics Versus Statistical Mechanics	5
	1.3	Classification of State Variables	6
	1.4	Energy in Mechanics	8
	1.5	Elementary Kinetic Theory	12
2	First	Law of Thermodynamics	15
	2.1	Statement of the First Law	15
	2.2	Quasistatic Work	17
	2.3	Heat Capacities	19
	2.4	Work Due to Expansion of an Ideal Gas	24
	2.5	Enthalpy	28
3	Seco	and Law of Thermodynamics	31
	3.1	Statement of the Second Law	32
	3.2	Carnot Cycle and Engines	35
	3.3	Calculation of the Entropy Change	39
	3.4	Combined First and Second Laws	41
	3.5	Statistical Interpretation of Entropy	47

4	Thir	Third Law of Thermodynamics		
	4.1	Statement of the Third Law	49	
	4.2	Implications of the Third Law	50	
5 Op		Open Systems		
	5.1	Single Component Open System	53	
	5.2	Multicomponent Open Systems	55	
	5.3	Euler Theorem of Homogeneous Functions	59	
	5.4	Chemical Potential of Real Gases, Fugacity	64	
	5.5	Legendre Transformations	67	
	5.6	Partial Molar Quantities	71	
	5.7	Entropy of Chemical Reaction	75	
6	Equ	Equilibrium and Thermodynamic Potentials		
	6.1	Entropy Criterion	79	
	6.2	Energy Criterion	84	
	6.3	Other Equilibrium Criteria	88	
	6.4	Summary of Criteria	92	
7	Req	uirements for Stability	95	
	7.1	Stability Requirements for Entropy	95	
	7.2	Stability Requirements for Internal Energy	100	
	7.3	Stability Requirements for Other Potentials	102	
	7.4	Consequences of Stability Requirements	105	
	7.5	Extension to Many Variables	106	
	7.6	Principles of Le Chatlier and Le Chatlier-Braun	107	
8	Mor	nocomponent Phase Equilibrium	109	
	8.1	Clausius-Clapeyron Equation	110	
	8.2	Sketches of the Thermodynamic Functions	115	
	8.3	Phase Diagram in the <i>v</i> , <i>p</i> Plane	118	

9	Two-Phase Equilibrium for a van der Waals Fluid		121
	9.1	van der Waals Equation of State	121
	9.2	Thermodynamic Functions	124
	9.3	Phase Equilibrium and Miscibility Gap	127
	9.4	Gibbs Free Energy	131
10	Bina	ry Solutions	137
	10.1	Thermodynamics of Binary Solutions	137
	10.2	Ideal Solutions	142
	10.3	Phase Diagram for an Ideal Solid and an Ideal Liquid	145
	10.4	Regular Solution	148
	10.5	General Binary Solutions	153
11	Exte	rnal Forces and Rotating Coordinate Systems	155
	11.1	Conditions for Equilibrium	155
	11.2	Uniform Gravitational Field	157
	11.3	Non-Uniform Gravitational Field	164
	11.4	Rotating Systems	164
	11.5	Electric Fields	166
12	Cher	nical Reactions	167
	12.1	Reactions at Constant Volume or Pressure	168
	12.2	Standard States	171
	12.3	Equilibrium and Affinity	173
	12.4	Explicit Equilibrium Conditions	175
	12.5	Simultaneous Reactions	182
13	Ther	modynamics of Fluid-Fluid Interfaces	185
	13.1	Planar Interfaces in Fluids	186
	13.2	Curved Interfaces in Fluids	197

x Table of Contents

	13.3	Interface Junctions and Contact Angles	202
	13.4	Liquid Surface Shape in Gravity	205
14	Ther	modynamics of Solid-Fluid Interfaces	215
	14.1	Planar Solid-Fluid Interfaces	216
	14.2	Anisotropy of γ	221
	14.3	Curved Solid-Fluid Interfaces	227
	14.4	Faceting of a Large Planar Face	233
	14.5	Equilibrium Shape from the ξ -Vector	236
	14.6	Herring Formula	240
	14.7	Legendre Transform of the Equilibrium Shape	241
	14.8	Remarks About Solid-Solid Interfaces	242
PA	RT II	Statistical Mechanics	245
15	Entr	opy and Information Theory	247
	15.1	Entropy as a Measure of Disorder	247
	15.2	Boltzmann Eta Theorem	251
16	Micr	ocanonical Ensemble	257
	16.1	Fundamental Hypothesis of Statistical Mechanics	258
	16.2	Two-State Subsystems	261
	16.3	Harmonic Oscillators	265
	16.4	Ideal Gas	267
	16.5	Multicomponent Ideal Gas	273
17	Class	sical Microcanonical Ensemble	277
	17.1	Liouville's Theorem	278
	17.2	Classical Microcanonical Ensemble	280

18	Disti Inte	285	
	18.1	Derivation of the Boltzmann Distribution	285
	18.2	Two-State Subsystems	289
	18.3	Harmonic Oscillators	293
	18.4	Rigid Linear Rotator	303
19	Cano	onical Ensemble	305
	19.1	Three Derivations	305
	19.2	Factorization Theorem	312
	19.3	Classical Ideal Gas	313
	19.4	Maxwell-Boltzmann Distribution	317
	19.5	Energy Dispersion	320
	19.6	Paramagnetism	321
	19.7	Partition Function and Density of States	330
20	Class	ical Canonical Ensemble	337
	20.1	Classical Ideal Gas	338
	20.2	Law of Dulong and Petit	342
	20.3	Averaging Theorem and Equipartition	343
	20.4	Virial Theorem	346
	20.5	Virial Coofficients	240
	20.0	virial Coefficients	348
	20.6	Use of Canonical Transformations	348 354
	20.6 20.7	Use of Canonical Transformations Rotating Rigid Polyatomic Molecules	348 354 356
21	20.6 20.7 Gran	Use of Canonical Transformations Rotating Rigid Polyatomic Molecules d Canonical Ensemble	348 354 356 359
21	20.6 20.7 Gran 21.1	Use of Canonical Transformations Rotating Rigid Polyatomic Molecules ad Canonical Ensemble Derivation from Microcanonical Ensemble	348 354 356 359 360
21	20.6 20.7 Gran 21.1 21.2	Use of Canonical Transformations Rotating Rigid Polyatomic Molecules ad Canonical Ensemble Derivation from Microcanonical Ensemble Ideal Systems: Orbitals and Factorization	348 354 356 359 360 368
21	20.3 20.6 20.7 Gran 21.1 21.2 21.3	Use of Canonical Transformations Rotating Rigid Polyatomic Molecules of Canonical Ensemble Derivation from Microcanonical Ensemble Ideal Systems: Orbitals and Factorization Classical Ideal Gas with Internal Structure	348 354 356 359 360 368 380
21	20.3 20.6 20.7 Gran 21.1 21.2 21.3 21.4	Use of Canonical Transformations Rotating Rigid Polyatomic Molecules ad Canonical Ensemble Derivation from Microcanonical Ensemble Ideal Systems: Orbitals and Factorization Classical Ideal Gas with Internal Structure Multicomponent Systems	348 354 356 359 360 368 380 388

22	Entre	opy for Any Ensemble	397
	22.1	General Ensemble	397
	22.2	Summation over Energy Levels	402
23	Unif	ied Treatment of Ideal Fermi, Bose, and Classical Gases	405
	23.1	Integral Formulae	406
	23.2	The Functions $h_{\nu}(\lambda, a)$	408
	23.3	Virial Expansions for Ideal Fermi and Bose Gases	410
	23.4	Heat Capacity	412
24	Bose	Condensation	413
	24.1	Bosons at Low Temperatures	413
	24.2	Thermodynamic Functions	416
	24.3	Condensate Region	421
25	Dege	enerate Fermi Gas	425
	25.1	Ideal Fermi Gas at Low Temperatures	425
	25.2	Free Electron Model of a Metal	428
	25.3	Thermal Activation of Electrons	429
	25.4	Pauli Paramagnetism	433
	25.5	Landau Diamagnetism	436
	25.6	Thermionic Emission	439
	25.7	Semiconductors	442
26	Quai	ntum Statistics	451
	26.1	Pure States	451
	26.2	Statistical States	453
	26.3	Random Phases and External Influence	454
	26.4	Time Evolution	455
	26.5	Density Operators for Specific Ensembles	456

	26.6	Examples of the Density Matrix	459	
	26.7	Indistinguishable Particles	465	
27	Ising	Ising Model		
	27.1	Ising Model, Mean Field Treatment	470	
	27.2	Pair Statistics	477	
	27.3	Solution in One Dimension for Zero Field	479	
	27.4	Transfer Matrix	480	
	27.5	Other Methods of Solution	483	
	27.6	Monte Carlo Simulation	484	
PA	RT III	Appendices	495	
А	Stirli	ng's Approximation	497	
	A.1	Elementary Motivation of Eq. (A.1)	498	
	A.2	Asymptotic Series	499	
В	Use	of Jacobians to Convert Partial Derivatives	503	
	B.1	Properties of Jacobians	503	
	B.2	Connection to Thermodynamics	504	
С	Diffe	erential Geometry of Surfaces	509	
	C.1	Alternative Formulae for ξ Vector	509	
	C.2	Surface Differential Geometry	511	
	C.3	ξ Vector for General Surfaces	516	
	C.4	Herring Formula	518	
D	Equi	librium of Two-State Systems	523	
Е	Aspe	ects of Canonical Transformations	529	
	E.1	Necessary and Sufficient Conditions	530	
	E.2	Restricted Canonical Transformations	534	

xiv Table of Contents

F	Rota	ation of Rigid Bodies	537
	F.1	Moment of Inertia	537
	F.2	Angular Momentum	539
	F.3	Kinetic Energy	540
	F.4	Time Derivatives	540
	F.5	Rotating Coordinate System	541
	F.6	Matrix Formulation	544
	F.7	Canonical Variables	546
	F.8	Quantum Energy Levels for Diatomic Molecule	547
G	Ther	modynamic Perturbation Theory	549
	G.1	Classical Case	549
	G.2	Quantum Case	550
н	Sele	cted Mathematical Relations	553
	H.1	Bernoulli Numbers and Polynomials	553
	H.2	Euler-Maclaurin Sum Formula	554
I	Crea	tion and Annihilation Operators	559
	I.1	Harmonic Oscillator	559
	I.2	Boson Operators	560
	I.3	Fermion Operators	562
	I.4	Boson and Fermion Number Operators	563
Referen	ces		565
Index			569

About the Cover

To represent the many scientists who have made major contributions to the foundations of thermodynamics and statistical mechanics, the cover of this book depicts four significant scientists along with some equations and graphs associated with each of them.

- James Clerk Maxwell (1831-1879) for his work on thermodynamics and especially the kinetic theory of gases, including the Maxwell relations derived from perfect differentials and the Maxwell-Boltzmann Gaussian distribution of gas velocities, a precursor of ensemble theory (see Sections 5.2, 19.4, and 20.1).
- Ludwig Boltzmann (1844-1906) for his statistical approach to mechanics of many particle systems, including his Eta function that describes the decay to equilibrium and his formula showing that the entropy of thermodynamics is proportional to the logarithm of the number of microscopic realizations of a macrosystem (see Chapters 15–17).
- J. Willard Gibbs (1839-1903) for his systematic theoretical development of the thermodynamics of heterogeneous systems and their interfaces, including the definition of chemical potentials and free energy that revolutionized physical chemistry, as well as his development of the ensemble theory of statistical mechanics, including the canonical and grand canonical ensembles. The contributions of Gibbs are ubiquitous in this book, but see especially Chapters 5–8, 12–14, 17, 20, and 21.
- Max Planck (1858-1947, Nobel Prize 1918) for his quantum hypothesis of the energy of cavity radiation (hohlraum blackbody radiation) that connected statistical mechanics to what later became quantum mechanics (see Section 18.3.2); the Planck distribution of radiation flux versus frequency for a temperature 2.725 K describes the cosmic microwave background, first discovered in 1964 as a remnant of the Big Bang and later measured by the COBE satellite launched by NASA in 1989.

The following is a partial list of many others who have also made major contributions to the field, all deceased. Recipients of a Nobel Prize (first awarded in 1901) are denoted by the letter "N" followed by the award year. For brief historical introductions to thermodynamic and statistical mechanics, see Cropper [99, pp. 41-136] and Pathria and Beale [9, pp. xxi-xxvi], respectively. The scientists are listed in the order of their year of birth:

Sadi Carnot (1796-1832); Julius von Mayer (1814-1878); James Joule (1818-1889); Hermann von Helmholtz (1821-1894); Rudolf Clausius (1822-1888); William Thomson, Lord Kelvin (1824-1907); Johannes van der Waals (1837-1923, N1910); Jacobus van't Hoff (1852-1911, N1901); Wilhelm Wien (1864-1928, N1911); Walther Nernst (1864-1941, N1920); Arnold Sommerfeld (1868-1951); Théophile de Donder (1872-1957); Albert

xvi About the Cover

Einstein (1879-1955, N1921); Irving Langmuir (1881-1957, N1932); Erwin Schrödinger (1887-1961, N1933); Satyendra Bose (1894-1974); Pyotr Kapitsa (1894-1984, N1978); William Giauque (1895-1982, N1949); John van Vleck (1899-1980, N1977); Wolfgang Pauli (1900-1958, N1945); Enrico Fermi (1901-1954, N1938); Paul Dirac (1902-1984, N1933); Lars Onsager (1903-1976, N1968); John von Neumann (1903-1957); Lev Landau (1908-1968, N1962); Claude Shannon (1916-2001); Ilya Prigogine (1917-2003, N1977); Kenneth Wilson (1936-2013, N1982).

Preface

This book is based on lectures in courses that I taught from 2000 to 2011 in the Department of Physics at Carnegie Mellon University to undergraduates (mostly juniors and seniors) and graduate students (mostly first and second year). Portions are also based on a course that I taught to undergraduate engineers (mostly juniors) in the Department of Metallurgical Engineering and Materials Science in the early 1970s. It began as class notes but started to be organized as a book in 2004. As a work in progress, I made it available on my website as a pdf, password protected for use by my students and a few interested colleagues.

It is my version of what I learned from my own research and self-study of numerous books and papers in preparation for my lectures. Prominent among these sources were the books by Fermi [1], Callen [2], Gibbs [3, 4], Lupis [5], Kittel and Kroemer [6], Landau and Lifshitz [7], and Pathria [8, 9], which are listed in the bibliography. Explicit references to these and other sources are made throughout, but the source of much information is beyond my memory.

Initially it was my intent to give an integrated mixture of thermodynamics and statistical mechanics, but it soon became clear that most students had only a cursory understanding of thermodynamics, having encountered only a brief exposure in introductory physics and chemistry courses. Moreover, I believe that thermodynamics can stand on its own as a discipline based on only a few postulates, or so-called laws, that have stood the test of time experimentally. Although statistical concepts can be used to motivate thermodynamics, it still takes a bold leap to appreciate that thermodynamics is valid, within its intended scope, independent of any statistical mechanical model. As stated by Albert Einstein in Autobiographical Notes (1946) [10]:

"A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore the deep impression which classical thermodynamics made on me. It is the only physical theory of universal content concerning which I am convinced that within the framework of the applicability of its basic concepts, it will never be overthrown."

Of course thermodynamics only allows one to relate various measurable quantities to one another and must appeal to experimental data to get actual values. In that respect, models based on statistical mechanics can greatly enhance thermodynamics by providing values that are independent of experimental measurements. But in the last analysis, any model must be compatible with the laws of thermodynamics in the appropriate limit of sufficiently large systems. Statistical mechanics, however, has the potential to treat smaller systems for which thermodynamics is not applicable.

Consequently, I finally decided to present thermodynamics first, with only a few connections to statistical concepts, and then present statistical mechanics in that context. That allowed me to better treat reversible and irreversible processes as well as to give a thermodynamic treatment of such subjects as phase diagrams, chemical reactions, and anisotropic surfaces and interfaces that are especially valuable to materials scientists and engineers.

The treatment of statistical mechanics begins with a mathematical measure of disorder, quantified by Shannon in the context of information theory. This measure is put forward as a candidate for the entropy, which is formally developed in the context of the microcanonical, canonical, and grand canonical ensembles. Ensembles are first treated from the viewpoint of quantum mechanics, which allows for explicit counting of states. Subsequently, classical versions of the microcanonical and canonical ensembles are presented in which integration over phase space replaces counting of states. Thus, information is lost unless one establishes the number of states to be associated with a phase space volume by requiring agreement with quantum treatments in the limit of high temperatures. This is counter to the historical development of the subject, which was in the context of classical mechanics. Later in the book I discuss the foundation of the quantum mechanical treatment by means of the density operator to represent pure and statistical (mixed) quantum states.

Throughout the book, a number of example problems are presented, immediately followed by their solutions. This serves to clarify and reinforce the presentation but also allows students to develop problem-solving techniques. For several reasons I did not provide lists of problems for students to solve. Many such problems can be found in textbooks now in print, and most of their solutions are on the internet. I leave it to teachers to assign modifications of some of those problems or, even better, to devise new problems whose solutions cannot yet be found on the internet.

The book also contains a number of appendices, mostly to make it self-contained but also to cover technical items whose treatment in the chapters would tend to interrupt the flow of the presentation.

I view this book as an intermediate contribution to the vast subjects of thermodynamics and statistical mechanics. Its level of presentation is intentionally more rigorous and demanding than in introductory books. Its coverage of statistical mechanics is much less extensive than in books that specialize in statistical mechanics, such as the recent third edition of Pathria's book, now authored by Pathria and Beale [9], that contains several new and advanced topics. I suspect the present book will be useful for scientists, particularly physicists and chemists, as well as engineers, particularly materials, chemical, and mechanical engineers. If used as a textbook, many advanced topics can be omitted to suit a one- or two-semester undergraduate course. If used as a graduate text, it could easily provide for a one- or two-semester course. The level of mathematics needed in most parts of the book is advanced calculus, particularly a strong grasp of functions of several variables, partial derivatives, and infinite series as well as an elementary knowledge of differential equations and their solutions. For the treatment of anisotropic surfaces and interfaces, necessary relations of differential geometry are presented in an appendix. For the statistical mechanics part, an appreciation of stationary quantum states, including degenerate states, is essential, but the calculation of such states is not needed. In a few places, I use the notation of the Dirac vector space, bras and kets, to represent quantum states, but always with reference to other representations; the only exceptions are Chapter 26, Quantum Statistics, where the Dirac notation is used to treat the density operator, and Appendix I, where creation and annihilation operators are treated.

I had originally considered additional information for this book, including more of my own research on the thermodynamics of inhomogeneously stressed crystals and a few more chapters on the statistical mechanical aspects of phase transformations. Treatment of the liquid state, foams, and very small systems were other possibilities. I do not address many-body theory, which I leave to other works. There is an introduction to Monte Carlo simulation at the end of Chapter 27, which treats the Ising model. The renormalization group approach is described briefly but not covered in detail. Perhaps I will address some of these topics in later writings, but for now I choose not to add to the already considerable bulk of this work.

Over the years that I shared versions of this book with students, I received some valuable feedback that stimulated revision or augmentation of topics. I thank all those students. A few faculty at other universities used versions for self-study in connection with courses they taught, and also gave me some valuable feedback. I thank these colleagues as well. I am also grateful to my research friends and co-workers at NIST, where I have been a consultant for nearly 45 years, whose questions and comments stimulated a lot of critical thinking; the same applies to many stimulating discussions with my colleagues at Carnegie-Mellon and throughout the world. Singular among those was my friend and fellow CMU faculty member Prof. William W. Mullins who taught me by example the love, joy and methodologies of science. There are other people I could thank individually for contributing in some way to the content of this book but I will not attempt to present such a list. Nevertheless, I alone am responsible for any misconceptions or outright errors that remain in this book and would be grateful to anyone who would bring them to my attention.

In bringing this book to fruition, I would especially like to thank my wife Carolyn for her patience and encouragement and her meticulous proofreading. She is an attorney, not a scientist, but the logic and intellect she brought to the task resulted in my rewriting a number of obtuse sentences and even correcting a number of embarrassing typos and inconsistent notation in the equations. I would also like to thank my friends Susan and John of Cosgrove Communications for their guidance with respect to several aesthetic aspects of this book. Thanks are also due to the folks at my publisher Elsevier: Acquisitions Editor Dr. Anita Koch, who believed in the product and shepherded it through technical review, marketing and finance committees to obtain publication approval; Editorial Project Manager Amy Clark, who guided me though cover and format design as

xx Preface

well as the creation of marketing material; and Production Project Manager Paul Prasad Chandramohan, who patiently managed to respond positively to my requests for changes in style and figure placements, as well as my last-minute corrections. Finally, I thank Carnegie Mellon University for providing me with an intellectual home and the freedom to undertake this work.

> Robert F. Sekerka Pittsburgh, PA