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Abstracts and Keywords

Chapter 01
Abstract: Thermal physics deals with macroscopic systems containing an enormous
number of particles. Equilibrium states can be characterized by a small number of state
variables such as the number of particles, volume, pressure, and temperature. We seek
to relate and compute values of properties of such systems, for example, heat capacity,
compressibility, and coefficient of thermal expansion. Thermodynamics can relate such
properties based on a few laws that govern changes of state variables of a system when
work is done on that system or energy is exchanged by heat transfer. An alternative is to use
statistical mechanics to compute average properties of models of many-particle systems.
The concept of temperature is introduced empirically based on thermal expansion, espe-
cially for an ideal gas thermometer. We classify state variables as extensive or intensive and
review quantitatively the concepts of kinetic and potential energy in classical mechanics.
Elementary kinetic theory is used to relate to temperature and pressure of an ideal gas.

Keywords: Thermodynamics, Statistical mechanics, Macroscopic state variables,
Extensive variable, Intensive variable, Temperature, Pressure, Ideal gas, Kinetic energy,
Potential energy
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2 THERMAL PHYSICS

Chapter 02
Abstract: The first law of thermodynamics is stated in terms of the existence of an
extensive function of state called the internal energy. For a chemically closed system,
the internal energy changes when energy is added by heat transfer or work is done by
the system. Heat and work are not state variables because they depend on a process.
Reversible quasistatic work can be done by a system by using pressure to change its
volume very slowly. Heat capacities are defined as the amount of energy needed to cause
temperature change at constant volume or pressure. Processes are illustrated for an ideal
gas whose energy depends only on temperature. Sudden volume changes can result in
irreversible work during which pressure is undefined. We define an auxiliary state function
known as enthalpy to relate to processes at constant pressure. Phase transformations such
as melting involve enthalpy changes that liberate latent heat.

Keywords: Internal energy, State function, Heat transfer, Quasistatic work, Heat
capacity, Reversible isothermal expansion, Irreversible expansion, Enthalpy, Latent heat
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Chapter 03
Abstract: The second law of thermodynamics is stated as the existence of an extensive
function of state called the entropy that can only increase for an isolated system. Equi-
librium is reached at maximum entropy. Reciprocal absolute temperature is defined as
entropy change with energy. Entropy is additive for a composite system. Heat added to
a chemically closed system increases entropy by an amount greater than the ratio of the
heat to the absolute temperature for an irreversible process; entropy equals that ratio for a
reversible process. We relate entropy to its historical roots including other postulates and
the Carnot cycle for an ideal gas. The second law plus the first law establish a fundamental
equation to calculate entropy changes as a function of state. Reversible and irreversible
expansion of an ideal gas are illustrated. Enthalpy and entropy changes are calculated
for an isobaric melting of ice. Entropy is related to quantum microstates of a system via
probability of a macrostate.

Keywords: Entropy, Absolute temperature defined, Composite system, Irreversible
change, Equilibrium criterion, Carnot cycle, Fundamental equation, Calculated entropy,
Quantum microstates, Probability, Boltzmann constant
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Chapter 04
Abstract: According to the third law of thermodynamics, the entropy of a system in inter-
nal equilibrium approaches a constant independent of phase as the absolute temperature
tends to zero. This constant value is taken to be zero for a non-degenerate ground state,
in accord with statistical mechanics. Independence of phase is illustrated by extrapolation
due to Fermi of the entropy of gray and white tin as the temperature is reduced to absolute
zero. The third law is based on the postulate of Nernst to explain empirical rules for
equilibrium of chemical reactions as absolute zero is approached. As a consequence of
the third law, the following quantities vanish at absolute zero: heat capacity, coefficient of
thermal expansion, and ratio of thermal expansion to isothermal compressibility.

Keywords: Zero of entropy, Absolute zero temperature, Phase independence, Vanishing
heat capacities, Vanishing expansion coefficient, Nernst chemical reaction postulate
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Chapter 05
Abstract: Open systems exchange particles with their environment in addition to work
and heat. This exchange entails energy transfer. Internal energy becomes a function of
entropy, volume, and moles of particles; its partial derivative with particle mole number
is called chemical potential. This is extended to multicomponent systems. The chemical
potential of an ideal gas depends on temperature and the logarithm of pressure, with fu-
gacity replacing pressure for real gases. Maxwell relations result by equating mixed partial
derivatives and relate measurable physical quantities. Euler’s theorem of homogeneous
functions formalizes relationships of extensive and intensive variables, allows integration
of fundamental differentials (Euler equation), and connects differentials of intensive vari-
ables (Gibbs-Duhem equation). Mole fractions define composition of multicomponent
systems. Legendre transformations are developed and used to define new potentials
such as Helmholtz and Gibbs free energies. Partial molar quantities are calculated by the
method of intercepts. Entropy of a chemical reaction is introduced.

Keywords: Chemical potential, Ideal gas, Fugacity, Euler equation, Gibbs-Duhem
equation, Legendre transformations, Mole fractions, Partial molar quantities, Method of
intercepts
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Chapter 06
Abstract: The equilibrium criterion of maximum entropy for an isolated system is
used to derive the equivalent criterion of minimum internal energy at constant entropy.
Alternative equilibrium criteria for chemically closed systems are derived for other con-
ditions and thermodynamic potentials: minimum Helmholtz free energy for constant
temperature and no external work; minimum enthalpy for constant pressure or minimum
Gibbs free energy for constant temperature and pressure, both with no external work in
excess of that against the external pressure. For an open system at constant temperature,
constant chemical potentials, and no external work, the Kramers potential is a minimum
at equilibrium. According to any of these criteria, the conditions for mutual equilibrium of
heterogeneous systems are uniformity of temperature, pressure, and chemical potentials
of each chemical component. We also derive the Gibbs phase rule that bounds the number
of macroscopic degrees of freedom, depending on the number of phases in mutual
equilibrium.

Keywords: Equilibrium criteria, Entropy equivalent, Internal energy, Helmholtz free
energy, Enthalpy, Gibbs free energy, Kramers potential, Mutual heterogeneous
equilibrium, Uniform potentials, Gibbs phase rule
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Chapter 07
Abstract: We investigate whether a homogeneous system is stable with respect to
breakup into a composite system of two or more homogeneous subsystems. Criteria
to avoid breakup lead to requirements for the dependence of the entropy and
thermodynamic potentials on their natural variables. For stability, the entropy must be a
concave function of its natural variables (all extensive) and the internal energy must be a
convex function of its natural variables (all extensive). The thermodynamic potentials
(Helmholtz, enthalpy, Gibbs, Kramers) must be convex functions of their extensive
variables and concave functions of their intensive variables. Properties of Legendre
transformations are used to derive the stability requirements for intensive variables. Local
stability criteria depend on the signs of second order partial derivatives. When these
stability criteria are violated, there can be locally unstable regions and metastable regions
that are locally stable but globally unstable. Then transformations can occur. Principles of
Le Chatlier and Le Chatlier-Braun elucidate the approach to equilibrium.

Keywords: Concave functions, Convex functions, Required functional dependence,
Globally stable, Locally stable, Metastable
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Chapter 08
Abstract: Phase equilibria for a monocomponent system require uniformity of tem-
perature, pressure, and chemical potential. In the temperature-pressure plane, single-
phase regions are separated from one another by two-phase coexistence curves that
meet at the triple point where all three phases, crystalline solid, liquid, and vapor, are in
mutual equilibrium. The Clausius-Clapeyron differential equation depends on the ratio
of enthalpy change to volume change and describes the coexistence curves that can
be approximated for ideal vapors. The solid-vapor coexistence curve ends at a critical
point; at larger pressures or temperatures there is no distinction between these phases.
The chemical potential is continuous at the coexistence curves but its slope versus
temperature or pressure is discontinuous. We develop equations for the thermodynamic
functions and sketch them versus temperature and pressure. Finally we discuss phase
equilibria in the volume-pressure plane where two phases in equilibrium are separated
by a miscibility gap in volume.

Keywords: Single-phase region, Two-phase coexistent curves, Triple point,
Clausius-Clapeyron equation, Vapor pressure, Arrhenius form, Critical point, Miscibility
gap
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Chapter 09
Abstract: The van der Waals model of a fluid exhibits a liquid-vapor phase transition.
Isotherms in the volume-pressure plane depend on a parameter accounting for the finite
size of molecules and another for molecular interactions. Below a critical temperature,
the pressure of an isotherm is not monotonic. The locus of its maximum and minimum
has an inverted U-shape and is called the spinodal curve. Volumes inside the spinodal
curve represent unstable fluid. For volumes just outside the spinodal the fluid becomes
metastable. For volumes beyond another inverted U-shaped curve there are two stable
phases, a liquid and a vapor, separated by a miscibility gap. The Helmholtz free energy
as a function of volume is investigated by the chord and common tangent constructions
to calculate the miscibility gap. Isotherms of the Gibbs free energy as a function of
pressure can be multiple-valued and display cusps. The miscibility gap obeys an equal-
area construction due to Maxwell.

Keywords: Liquid-vapor phase transition, Non-monotonic isotherms, Spinodal curve,
Miscibility gap, Non-convex Helmholtz energy, Chord construction, Common tangent
construction, Maxwell construction
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Chapter 10
Abstract: A binary solution constitutes two chemical components mutually dissolved
on an atomic scale. We study its molar Gibbs free energy as a function of mole fraction
at various temperatures and fixed pressure. Chemical potentials are calculated by the
method of intercepts. Below a critical temperature, the common tangent construction
demonstrates equilibrium between two phases having different mole fractions that lie on
a curve that bounds a miscibility gap. Ideal solutions are those whose components do not
interact energetically and whose entropy compared to unmixed components is due only
to random configuration of the components; they have no miscibility gap. An ideal solid
solution and an ideal liquid solution, however, are separated by a lens-shaped miscibility
gap for temperatures between melting points of the pure components. A regular solution
based on a mean-field model allows components to have energetic interactions; repulsive
interactions result in a miscibility gap and a spinodal curve below a critical temperature
in the composition-temperature plane.

Keywords: Mutual solubility, Ideal solution, Spinodal curve, Chemical potentials,
Method of intercepts, Common tangent construction, Miscibility gap, Phase diagram,
Lens-shaped gap, Regular solution
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Chapter 11
Abstract: We derive equilibrium criteria in the presence of conservative external forces.
For a chemically closed isothermal system with constant volume, equilibrium requires
virtual variations of the Helmholtz free energy plus the external potential to be posi-
tive. For a uniform gravitational field, use of the calculus of variations shows that the
gravitational chemical potential, which is the chemical potential per unit mass plus the
product of the gravitational acceleration and height, is constant for each component.
Pressure increases with height and the composition changes with height, so such systems
are not homogeneous. For a mixture of ideal gases and binary liquids, the segregation of
chemical components with height is small for samples of laboratory size. For the non-
uniform gravitational field in the atmosphere of the Earth, there can be larger segregation.
Rotating systems are treated by equivalence to gravitational forces; a fast centrifuge causes
significant segregation. For applied electric fields, the electrochemical potential of ions is
constant.

Keywords: Conservative external forces, Gravitational chemical potential,
Inhomogeneous pressure, Gravitational segregation, Centrifuge, Electrochemical
potential
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Chapter 12
Abstract: Chemical reactions entail making or breaking of bonds, so energy is conserved
for an isolated system. Reactions at constant volume or pressure exchange heat with
the environment by change of internal energy or enthalpy, respectively. Reaction extent
is measured by a progress variable; reactions progress until equilibrium is reached or
some component is depleted. We define standard states of components and heats of
formation of compounds. Affinity is defined as the decrease of Gibbs free energy per unit
progress variable; its sign determines the direction of the reaction such that entropy is
produced. Change of enthalpy per unit progress variable determines whether the reaction
is endothermic or exothermic. At equilibrium the affinity is zero. Equilibrium conditions
are expressed by equating a function of temperature and pressure called the “equilibrium
constant” to a reaction product that depends on activities and fugacities of chemical
components. Special cases include reaction products that can be approximated in terms
of partial pressures of ideal gases.

Keywords: Progress variable, Affinity, Entropy production, Endothermic, Exothermic,
Standard states, Equilibrium constant, Activity, Fugacity, Reaction product
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Chapter 13
Abstract: Surfaces or interfaces of discontinuity where phases meet are modeled by a
Gibbs dividing surface of zero thickness. The differences between extensive variables of
an actual system and one in which phases are uniform up to the dividing surface are
defined to be surface excess quantities that depend on location of the dividing surface. The
excess Kramers potential divided by surface area is independent of location and called the
surface free energy or surface tension. The Gibbs adsorption equation governs segregation
of surface components. The Cahn layer model is used to represent physically meaningful
surface excess quantities by determinants. Curved interfaces can exert forces that cause
pressure jumps between adjacent phases. We derive conditions for equilibrium at contact
lines where three interfaces meet. Shapes of liquid surfaces under forces due to gravity and
surface tension, including sessile drops and bubbles, are computed by solving differential
equations.

Keywords: Gibbs dividing surface, Surface excess quantities, Surface free energy,
Interfacial free energy, Surface tension, Cahn layer model, Gibbs adsorption equation,
Contact lines, Sessile drops, Sessile bubbles
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Chapter 14
Abstract: Solid-fluid interfaces differ from fluid-fluid interfaces because a solid can
be strained elastically. Surface area can change by stretching and by addition of new
surface, each process giving rise to surface stress. Interfacial energy and adsorption can
be referenced to the area of either the unstrained crystal surface or its actual strained
surface. Interfacial free energy of crystal-fluid interfaces is anisotropic, consistent with
crystal symmetry, and can be described by a vector field known as the ξ-vector; its normal
component is the surface free energy and its tangential component measures the change
of energy with surface orientation. A small crystal can acquire an equilibrium shape that
has facets and missing orientations and minimizes its surface energy. This shape can be
computed from the Wulff construction or the ξ-vector. A large crystal surface can develop
facets to minimize its energy. We derive Herring’s formula for the equilibrium potential on
a curved crystal surface.

Keywords: Surface strain, Surface stress, Anisotropic interfacial energy, ξ-vector,
Equilibrium shape, Wulff construction, Surface faceting, Herring formula
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Chapter 15
Abstract: Since the 1800s and the work of Clausius and Boltzmann, it was believed that
the entropy function, which can only increase for an isolated system, was a measure of
a state of greater probability, a more disordered state in which information is lacking.
In 1948, Shannon developed a quantitative measure of information in the context of
communication theory. Shannon’s measure is a function of an abstract set of probabilities
and provides a quantitative measure of disorder. It is maximum when all probabilities are
the same, in which case it becomes equal to Boltzmann’s formula for the entropy within
a multiplicative constant. This provides us with a modern basis for the microcanonical
ensemble in the next chapter. We give a demonstration of Boltzmann’s Eta theorem for an
ideal gas based on a statistical analysis of elastic collisions of hard spheres. Boltzmann’s Eta
function decreases as time increases. Its negative is the dynamical equivalent of Shannon’s
measure of disorder.

Keywords: Entropy, Communication theory, Shannon information function, Disorder
function, Maximum disorder, Boltzmann equation, Boltzmann Eta theorem
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Chapter 16
Abstract: An ensemble is a collection of microstates that are compatible with a specified
macrostate of a thermodynamic system. The microcanonical ensemble represents an
isolated system having fixed energy. For that ensemble, the fundamental assumption of
statistical mechanics is that every compatible stationary quantum microstate is equally
probable. Properties of a system in a macrostate are calculated by averaging its values over
the ensemble microstates. The entropy is assumed to be proportional to the logarithm
of the number of compatible microstates as proposed by Boltzmann and in agreement
with the disorder function of information theory. The proportionality constant is known as
Boltzmann’s constant. Temperature, pressure, and chemical potential are calculated from
partial derivatives of the entropy. The ensemble is illustrated for two-state subsystems,
harmonic oscillators, an ideal gas with the Gibbs correction factor, and a multicomponent
ideal gas. The entropy of mixing of ideal gases is calculated.

Keywords: Ensemble, Stationary quantum microstate, Boltzmann entropy, Boltzmann
constant, Two-state subsystem, Harmonic oscillator, Ideal gas, Gibbs correction factor,
Multicomponent ideal gas, Entropy of mixing
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Chapter 17
Abstract: Classical many-particle systems are governed by continuous variables, the
positions and momenta of all particles in multi-dimensional phase space. Total energy
depends on these variables and is called the Hamiltonian. Hamilton’s equations govern
dynamics. According to Liouville’s theorem, the time rate of change of the density of a
given set of particles in phase space is independent of time. For a system in equilibrium,
this will be true if the density depends only on the Hamiltonian. The classical micro-
canonical ensemble is obtained by assuming that this density is uniform in the volume
of phase space available to the system for a narrow band of energies; it plays the same
role as the assumption of equal probability of microstates for the quantum ensemble. The
entropy is calculated within an additive constant by assuming it to be proportional to the
logarithm of available phase space. We illustrate this ensemble for an ideal gas and three-
dimensional harmonic oscillators.

Keywords: Phase space, Hamiltonian, Hamilton’s equations, Liouville’s theorem, Phase
space density, Available phase space, Uniform probability density
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Chapter 18
Abstract: We derive a simplified version of the canonical ensemble developed in the next
chapter. We treat a system of identical particles that can be distinguished, perhaps by
position in a solid. We derive a statistical distribution of particles, each in a quantum state,
by maximizing the number of ways they can be distributed among quantum states, subject
to the constraint of constant total energy. This results in a most probable distribution.
The probability of occupation of a given quantum state is proportional to its Boltzmann
factor, the exponential of the negative of the energy of that state divided by a thermal
energy. The thermal energy is the product of temperature and Boltzmann’s constant. The
sum of all Boltzmann factors is called the partition function and is used to determine
thermodynamic functions. Examples include two-state subsystems, harmonic oscillators,
and rotations of a rigid diatomic molecule. Results are used to model heat capacities of
solids and blackbody (cavity) radiation.

Keywords: Distinguishable particles, Most probable distribution, Boltzmann factor,
Partition function, Rigid rotator, Heat capacity, Blackbody radiation, Stefan-Boltzmann
constant
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Chapter 19
Abstract: The canonical ensemble applies to a system held at constant temperature. We
present two derivations based on the microcanonical ensemble by putting a system of
interest in contact with a heat reservoir to form an isolated system. A third derivation
employs the most probable distribution of ensemble members. The probability of a
system being in a given stationary quantum state is proportional to its Boltzmann factor.
We calculate dispersion of energy relative to its average. The sum of Boltzmann factors
gives a system partition function that relates to the Helmholtz free energy. For a system
composed of independent but distinguishable subsystems with negligible interaction
energies, the system partition function factors. For such subsystems of identical particles,
we recover the simplified ensemble of the preceding chapter. We treat an ideal gas and
explore its Maxwell-Boltzmann distribution of velocities. Paramagnetism is treated both
classically and quantum mechanically and compared. The partition function is related to
the density of states by a Laplace transform.

Keywords: Heat reservoir, System Boltzmann factor, System partition function,
Helmholtz free energy, Factorization theorem, Energy dispersion, Maxwell-Boltzmann
distribution, Paramagnetism, Adiabatic demagnetization, Density of states
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Chapter 20
Abstract: The classical canonical ensemble employs a probability density function in
phase space in which the energy in the Boltzmann factor for a quantum system is
replaced by the classical Hamiltonian. The classical partition function is the integral of
that Boltzmann factor over phase space. One can artificially divide the classical partition
function by a factor containing powers of Planck’s constant to get results that agree with
quantum mechanics at high temperatures. We illustrate this for an ideal gas and compute
effusion from a small hole. The law of Dulong and Petit is derived for a harmonic potential.
We compute classical averages of canonical coordinates and momenta. We derive the
virial theorem for time averages and use it to treat a nonideal gas with particle interac-
tions calculated by using a pair distribution function. We discuss the use of canonical
transformations in calculating partition functions and calculate the partition function for
a rotating polyatomic molecule by using Jacobians.

Keywords: Probability density function, Phase space integral, Classical partition
function, Ideal gas effusion, Law of Dulong and Petit, Classical averages, Virial theorem,
Pair distribution function, Canonical transformation, Rotating polyatomic molecule
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Chapter 21
Abstract: The grand canonical ensemble applies to a system at constant temperature and
chemical potential; its number of particles is not fixed. We derive it from the microcanon-
ical ensemble by contact with heat and particle reservoirs to form an isolated system.
The probability of a system having a specified number of particles and being in a given
stationary quantum state is proportional to its Gibbs factor, the product of a Boltzmann
factor and a factor exponential in the number of particles. Summing all Gibbs factors gives
the grand partition function that relates to the Kramers potential. We calculate dispersion
of particle number and energy. The grand partition function factors for independent
subsystems, dilute sites, and ideal Fermi and Bose gases whose distribution functions are
derived. We treat a classical ideal gas with internal nuclear and electronic structure and
molecules that can rotate and vibrate. A pressure ensemble is derived and used to treat
point defects in crystals.

Keywords: Grand partition function, Gibbs factor, Particle number dispersion, Kramers
potential, Dilute systems, Fermi-Dirac distribution, Bose-Einstein distribution, Ideal gas
internal structure, Pressure ensemble, Crystal point defects
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Chapter 22
Abstract: We use the method of the most probable distribution to show that the entropy
for a general ensemble can be expressed by the maximum value of the disorder function
of information theory, derived in Chapter 15, subject to the set of constraints appropriate
to the ensemble. We illustrate this in detail for a grand canonical ensemble with two kinds
of particles. We treat a number of other ensembles practically by inspection, including an
ensemble that relates to a Massieu function that is the Legendre transform of the entropy.
By using a degeneracy factor to sum over energy levels, particle numbers, and volumes, we
show that all ensembles can be related in a similar way to their associated thermodynamic
functions, as observed by Hill.

Keywords: Most probable distribution, Maximum disorder, Ensemble constraints,
Degeneracy factor, Density of distribution functions
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Chapter 23
Abstract: We give a unified treatment of ideal Fermi, Bose, and classical gases for tem-
peratures sufficiently large that energy levels can be treated as a quasi-continuous. Sums
can be converted to integrals over a density of quantum states to evaluate thermodynamic
functions. Pressure is equal to two-thirds of the energy density for all three gases. Relevant
integrals can be represented by series expansions if the absolute activity is less than unity,
which is always the case for bosons. For fermions, larger values of the absolute activity
can be handled by an asymptotic expansion. Virial expansions for the pressure of these
ideal gases are power series in the ratio of the actual concentration to the quantum
concentration. For absolute activity less than unity, the deviation from ideal gas behavior
is practically linear in that ratio, less pressure for bosons, and more for fermions. Formulae
for the heat capacity of these gases at constant volume are calculated in terms of several
integrals.

Keywords: Quasi-continuous energies, Density of states, Series expansions, Asymptotic
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Chapter 24
Abstract: Below a critical temperature, occupation of the ground state of a Bose gas
becomes comparable to occupation of all excited states. This Bose condensation increases
with decreasing temperature and affects thermodynamic functions. Only particles in
excited states contribute to the pressure, internal energy, and entropy. Pressure remains
equal to two-thirds of the energy density and becomes independent of molar volume.
Heat capacity per particle is zero at zero temperature and rises to a sharp maximum at
the critical temperature; with further increase of temperature it decreases to the constant
value of a classical ideal gas. Its graph somewhat resembles the Greek letter lambda. A
similar behavior occurs in helium with mass number four at its so-called lambda-point,
although helium is not ideal because its atoms attract. We explore condensate regions that
are bounded by an isentrope in the volume-temperature and volume-pressure planes.
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Chapter 25
Abstract: Even at absolute zero, the Pauli exclusion principle forces fermions into high
energy states, a degenerate gas. States fill to the Fermi energy, equivalent to about 50,000 K
for a free electron gas. At laboratory temperatures, small excitation into higher energy
states is calculated by using an asymptotic Sommerfeld expansion. Heat capacity is linear
in temperature and typically 100 times smaller than for a classical gas. A magnetic field
can split spin states, resulting in weak Pauli paramagnetism; its effect on orbits causes
Landau diamagnetism. Heating enables electron escape by thermionic emission, also
affected by electric fields and radiation. Semiconductors have densities of states with a
forbidden energy band. Electrons in intrinsic semiconductors can be thermally excited to
a conduction band above a band gap leaving empty states called holes in the valence band.
This results in electrical conductivity that can be enhanced by dopants called donors and
acceptors that provide states that are easier to excite.

Keywords: Pauli exclusion principle, Fermi energy, Sommerfeld expansion, Pauli
paramagnetism, Landau diamagnetism, Thermionic emission, Band gap, Intrinsic
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Chapter 26
Abstract: Two types of averaging occur in quantum statistical mechanics, the first for
pure quantum mechanical states and the second for a statistical ensemble of pure
states. We define and exhibit the properties of density operators and their density matrix
representation for both pure and statistical states. For equilibrium states, a statistical
density operator depends only on stationary quantum states. We exhibit it in the energy
representation for the microcanonical, canonical, and grand canonical ensembles; its use
is illustrated for an ideal gas and the harmonic oscillator. Density matrices for spin 1/2
are expressed in terms of a polarization vector and Pauli spin matrices and related to
vectors called spinors. Symmetric wave functions for bosons and antisymmetric wave
functions for fermions are constructed from single-particle quantum states in terms of
occupation numbers by using permutation operators, or Slater determinants for fermions.
Weighting factors for states are contrasted for bosons, fermions, and distinguishable
classical particles.

Keywords: Pure state, Statistical state, Density operator, Density matrix, Pauli spin
matrices, Polarization vector, Occupation numbers, Symmetric boson states,
Antisymmetric fermion states, Weighting factors
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Chapter 27
Abstract: Cooperative phenomena are introduced via the simple Ising model in which
spins having two states occupy a lattice and interact with nearest neighbors and an
applied magnetic field. We study this model in the mean field approximation. Correlations
among spin states are neglected, so each spin interacts with a self-consistent mean field.
With no applied magnetic field, the model predicts ordering of spins below some critical
temperature for lattices of all dimensionalities, 1, 2, 3, . . . , and enables properties such
as heat capacity and magnetic susceptibility to be calculated. Exact solutions for a one-
dimensional lattice show no ordering transition; the mean field model fails badly in that
case but otherwise shows reasonable trends. Exact solutions exist in two dimensions
and show ordering. Better approximate solutions (Boethe cluster model) or numerical
solutions can be obtained for lattices of all dimensionalities. We introduce Monte Carlo
simulation for numerical solution of the Ising model as well as for models involving
interacting classical particles.

Keywords: Spin interactions, Correlations, Mean field model, Ordering, Critical
temperature, Heat capacity, Magnetic susceptibility, Exact solutions, Monte Carlo
simulation, Interacting classical particles
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Appendix A
Abstract: We state Stirling’s approximation for the logarithms of factorials of large
numbers and for the factorials themselves. We present some numerical examples and an
elementary motivation by using a staircase to approximate the graph of a logarithm. Then
we discuss Stirling’s asymptotic series for the gamma function. We contrast asymptotic
series and convergent series.

Keywords: Approximation of factorials, Gamma function, Asymptotic series, Convergent
series
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Appendix B
Abstract: Most thermodynamic properties can be expressed in terms of partial deriva-
tives. Jacobians are determinants that provide a systematic and powerful way to convert
partial derivatives for a certain variable set to partial derivatives with respect to a different
variable set, and hence to other physical properties. Useful properties of determinants are
reviewed, especially the fact that they multiply formally like fractions. Examples related
to thermodynamics include: relationship of heat capacity at constant volume to that at
constant pressure; ratio of those heat capacities to the ratio of compressibility at constant
entropy to that at constant temperature; and relationship of isentropic thermal expansion
to isothermal thermal expansion.

Keywords: Jacobian determinants, Jacobian multiplication, Isentropic compressibility,
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Appendix C
Abstract: We introduce methods for calculation of the xi-vector used to measure
anisotropy of crystal surface free energy. A vector formulation of differential geometry
is presented for a parametric representation of a surface. Normal and tangential vectors
and their reciprocal vectors are used to derive general formulae for mean and Gaussian
surface curvatures. Differential operators such as surface gradient, divergence, and curl
are defined. We derive a general formulation for the variation of a surface normal for
small changes in the surface. The surface divergence theorem is presented. Divergence
of the xi-vector is calculated for a general surface and in a Monge representation. This
methodology is used to derive a generalization of Herring’s formula for surface chemical
potential and for a variational approach to surface equilibrium shape.

Keywords: xi-Vector, Anisotropy, Mean curvature, Gaussian curvature, Surface
differential operators, Surface divergence theorem, Divergence of xi-vector, Generalized
Herring formula, Variational formulation
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Appendix D
Abstract: We use the microcanonical ensemble to make a detailed study of the equilib-
rium of a composite system consisting of two-state subsystems, each having a number
of spin 1/2 particles. The multiplicity function of the combined system is a sum over
products of the multiplicity functions of the subsystems that conserve total energy. That
sum is dominated by its largest terms; we evaluate it approximately by converting to two
Gaussian integrals whose integrands are sharp peaks having a narrow region of overlap.
We demonstrate explicitly how the logarithm of the product of subsystem multiplicity
functions, evaluated at their peaks, is equal to that for the combined system, provided
that sub-extensive terms are negligible. This demonstrates the degree to which entropy of
the subsystems is additive.

Keywords: Composite system, Spin one-half, Multiplicity functions, Dominant terms,
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Sekerka, 978-0-12-803304-3

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is
confidential until formal publication.



B978-0-12-803304-3.09982-8, 09982

32 THERMAL PHYSICS

Appendix E
Abstract: We use a variational method due to Courant to derive the necessary and
sufficient conditions for a general canonical transformation that can depend on time
in terms of Lagrange brackets. These transformation conditions can be described by a
matrix that is a member of the symplectic group and has a Jacobian of magnitude unity.
This knowledge enables the conversion of integral expressions for the classical canonical
partition function to be evaluated by making any convenient canonical transformation.
For restricted canonical transformations that are independent of time, we derive a simpli-
fied set of conditions and show that they are compatible with the general necessary and
sufficient conditions.

Keywords: General canonical transformation, Conditions, Lagrange brackets, Symplectic
matrix, Unit Jacobian, Restricted canonical transformation
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Appendix F
Abstract: We express the moment of inertia of a rigid body by a moment of inertia tensor.
Angular momentum and kinetic energy of a body that rotates about an axis through
its center of mass is related to its moment of inertia and an axial rotation vector. Time
derivatives are evaluated in a fixed reference frame. In a rotating coordinate system, the
inertia tensor can be expressed by three constant principal values. Fixed and rotating
coordinates are related by a matrix that depends on three Euler angles that can be related
to an axial rotation vector. The Hamiltonian of a rotating body, expressed in Euler angles
and principal moments of inertia, can be used to calculate canonical momenta of a
polyatomic molecule. We derive the quantum states for a diatomic molecule having three
principal moments of inertia.

Keywords: Rigid body, Moment of inertia, Inertia tensor, Angular momentum, Rotating
coordinates, Euler angles, Canonical momenta, Polyatomic molecule, Diatomic molecule
quantum states
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Appendix G
Abstract: We develop approximate methods for calculation of canonical partition func-
tions when the Hamiltonian is the sum of an unperturbed Hamiltonian plus a small
perturbation. For the classical case, the Boltzmann factor for the perturbation is expanded
to second order and evaluated by averaging with respect to the probabilities associated
with the unperturbed Hamiltonian. The Helmholtz free energy has a first-order correction
equal to the average of the perturbation and a negative second-order correction propor-
tional to its variance. For the quantum case, one approximates the energy eigenstates
by using second-order quantum perturbation theory and sums the resulting Boltzmann
factors. The second-order correction to the Helmholtz free energy is again negative and
proportional to the variance of the perturbation if the splittings of unperturbed energies
are small compared to the thermal energy.
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Appendix H
Abstract: Alternative definitions of Bernoulli numbers and polynomials are presented.
The Euler-Maclaurin sum formula that relates sums to integrals is presented in general
form with a remainder term. Specialization leads to an approximation for an infinite sum
of terms by an integral plus a series whose coefficients are Bernoulli numbers. Use of that
sum formula is illustrated for approximate evaluation of the partition function for a rigid
linear rotator and calculation of its heat capacity at high temperatures. We also derive a
sum formula for an infinite sum of terms that depend on half integers and test its use
to obtain an approximate partition function for a harmonic oscillator for which an exact
evaluation is possible.

Keywords: Bernoulli numbers, Bernoulli polynomials, Euler-Maclaurin sum formula,
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Appendix I
Abstract: We express the Hamiltonian for a one-dimensional harmonic oscillator in
terms of creation and annihilation operators. The commutation relation for such oper-
ators is the same as for boson operators and is used to find eigenvalues for their product,
which is a Hermitian number operator. We show by purely algebraic manipulations that
the eigenvalues of these number operators are integers. Eigenvectors for larger integers
can be created by successive operations of creation operators on an eigenvector with
eigenvalue zero. We discuss fermion operators that obey anticommutation relations and
explore the states of their number operators, whose only eigenvalues are zero and one.
Number operators for both boson and fermion operators are extended to many-particle
systems whose eigenvectors can be created by successive operation on a vacuum state
having eigenvalue zero.
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